321 research outputs found

    On the asymptotic spectrum of finite element matrix sequences

    Get PDF
    We derive a new formula for the asymptotic eigenvalue distribution of stiffness matrices obtained by applying Fi finite elements with standard mesh refinement to the semielliptic PDE of second order in divergence form -\u25bd(\u39a\u25bdTu) = f on \u3a9, u = g on 02\u3a9. Here \u3a9 82 \u211d2, and K is supposed to be piecewise continuous and point wise symmetric semipositive definite. The symbol describing this asymptotic eigenvalue distribution depends on the PDE, but also both on the numerical scheme for approaching the underlying bilinear form and on the geometry of triangulation of the domain. Our work is motivated by recent results on the superlinear convergence behavior of the conjugate gradient method, which requires the knowledge of such asymptotic eigenvalue distributions for sequences of matrices depending on a discretization parameter h when h \u2192 0. We compare our findings with similar results for the finite difference method which were published in recent years. In particular we observe that our sequence of stiffness matrices is part of the class of generalized locally Toeplitz sequences for which many theoretical tools are available. This enables us to derive some results on the conditioning and preconditioning of such stiffness matrices

    Shank's transformation revisited

    Get PDF
    AbstractA unified and self-contained approach to the block structure of Shank's table and its cross rules is presented. Wynn's regular and Cordellier's singular cross rules are derived by the Schur-complement method in a unified manner without appealing to Padé approximation. Moreover, by extending the definition of Shank's transformation to certain biinfinite sequences and by introducing a parameter it is possible to get more consistency with respect to Möbius transformations. It is well known that Padé approximants in general don't have this property

    Matrix interpretation of multiple orthogonality

    Get PDF
    In this work we give an interpretation of a (s(d + 1) + 1)-term recurrence relation in terms of type II multiple orthogonal polynomials.We rewrite this recurrence relation in matrix form and we obtain a three-term recurrence relation for vector polynomials with matrix coefficients. We present a matrix interpretation of the type II multi-orthogonality conditions.We state a Favard type theorem and the expression for the resolvent function associated to the vector of linear functionals. Finally a reinterpretation of the type II Hermite- Padé approximation in matrix form is given

    On the Convergence of Rational Ritz Values

    Full text link

    Convergence of the Isometric Arnoldi Process

    Full text link

    The Trigonometric Rosen-Morse Potential in the Supersymmetric Quantum Mechanics and its Exact Solutions

    Full text link
    The analytic solutions of the one-dimensional Schroedinger equation for the trigonometric Rosen-Morse potential reported in the literature rely upon the Jacobi polynomials with complex indices and complex arguments. We first draw attention to the fact that the complex Jacobi polynomials have non-trivial orthogonality properties which make them uncomfortable for physics applications. Instead we here solve above equation in terms of real orthogonal polynomials. The new solutions are used in the construction of the quantum-mechanic superpotential.Comment: 16 pages 7 figures 1 tabl

    The smallest eigenvalue of Hankel matrices

    Full text link
    Let H_N=(s_{n+m}),n,m\le N denote the Hankel matrix of moments of a positive measure with moments of any order. We study the large N behaviour of the smallest eigenvalue lambda_N of H_N. It is proved that lambda_N has exponential decay to zero for any measure with compact support. For general determinate moment problems the decay to 0 of lambda_N can be arbitrarily slow or arbitrarily fast. In the indeterminate case, where lambda_N is known to be bounded below by a positive constant, we prove that the limit of the n'th smallest eigenvalue of H_N for N tending to infinity tends rapidly to infinity with n. The special case of the Stieltjes-Wigert polynomials is discussed
    corecore